next up previous
Next: A..3 Disk Profile Up: A. Galaxy Surface Brightness Previous: A..1 Sersic Law


A..2 Bulge Profile

For $ n=4$, Equation 17 becomes de Vaucouleurs, or $ r^{1/4}$, law

$\displaystyle \Sigma_b(r) = \Sigma_e \,\exp\left(-7.6692 \left[\left(\frac{r}{r_e}\right) ^{1/4}-1\right] \right)~,$ (21)

which characterizes the profiles of elliptical galaxies and bulge components of disk galaxies. According to this profile, the total brightness can be written as

$\displaystyle F_{b,tot}=22.665\,\Sigma_e\,r_e^2~,$ (22)

while the central surface brightness $ \Sigma_0$ and the average surface brightness inside the effective radius $ <\Sigma>_e$ are related to $ \Sigma_e$ by

$\displaystyle \Sigma_0=2141.4\,\Sigma_e~,~~~~~~~ <\Sigma>_e=\frac{F_{b,tot}/2}{\pi\,r_e^2}=3.6072\,\Sigma_e~.$ (23)

The bulge profile given by Equation 21 can be put on the more common logarithmic scale writing

\begin{displaymath}\begin{split}\mu_b(r)&=-2.5\,\log\left(\frac{\Sigma_b(r)}{\Si...
...right)^{1/4}-1\right] ~\mathrm{[mag~arcsec^{-2}]}~, \end{split}\end{displaymath} (24)

where $ \Sigma_{zp}$ is the zero-point of the adopted surface brightness magnitude scale. Similarly, Equation 22 can be manipulated so as to express $ \Sigma_e$ as function of $ r_e$ and $ I$, obtaining

\begin{displaymath}\begin{split}\mu_e&=-2.5\,\log\left(\frac{\Sigma_e}{\Sigma_{z...
... +I_{\mathrm{[mag]}}~~~\mathrm{[mag~arcsec^{-2}]}~, \end{split}\end{displaymath} (25)

where $ F_{zp}$ is the zero-point of the adopted brightness magnitude scale.
next up previous
Next: A..3 Disk Profile Up: A. Galaxy Surface Brightness Previous: A..1 Sersic Law
Mattia Vaccari 2002-01-31